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I. INTRODUCTION

Quantum tunneling was first discovered in 1927 by
Friedrich Hund while observing the double well poten-
tial. Tunneling is a process where quantum particles have
a certain probability, which is determined by the wave
function, to pass through a potential barrier and appear
on the other side. It is similar to the effect of light and a
piece of glass. Some of the incoming light will be reflected
off the glass, while the rest will be refracted. Instead of
being determined by an index of refraction, however, it
is determined by the coefficient of transmission, which
is derived from case-specific solutions to the Schrödinger
equation. The transmission coefficient is reliant on the
energy of the particle, the strength of the potential, and
most importantly, for this lab, the width of the potential
barrier. The goal of this exercise is to use electrons and
quantum tunneling to determine four numerical values
from four different potential barrier setups. The exper-
iment consists of two different single potential barriers
where the width of the barrier will be measured and two
different double potential barriers where the distance be-
tween the two barriers will be experimentally determined.
These measurements are accomplished by arranging a cir-
cuit so electrons can be fired toward a potential barrier.
Some of those electrons are emitted where they subse-
quently reach a drain and complete the circuit, which
also measures the output.

II. THEORETICAL BACKGROUND

A. Single Potential Barrier

The single potential step problem is composed of one
material, of a higher potential, sandwiched in between
a different material which creates the barrier shown in
Figure 4.

FIG. 1: The figure shows the layout for the experimental setup
consisting of the two materials of different potentials with the
barrier V0 = 200meV . The graph shows energy as a function of
position x, with a being the width of the potential barrier [1].

The initial conditions of the system must be under-

stood to theoretically determine the width of the bar-
rier. A particle is incoming from the left at energy, E,
which is less than V0. The particle can either be re-
flected or transmitted through the barrier. The proba-
bility of reflection and transmission added together must
equal 1. Once inside the barrier, the particles will en-
counter this probability again and will either be reflected
or transmitted through the other side of the potential
step. Finding these probabilities is done by solving the
time-independent Schrödinger Equation, which is given
by,

Eϕ(x) =
−ℏ2

2m

d2ϕ(x)

dx2
+ V (x)ϕ(x). (1)

This equation is solved in three regions: Material A
on the left-hand side, Material B, and Material A on the
right-hand side. The solution produces five different co-
efficients AI the incoming particle, BI the reflected par-
ticle, AII the transmitted particle inside the barrier, BII

the reflected particle inside the barrier, and AIII the fully
transmitted particle. These coefficients provide the tools
to find the transmission coefficient. The transmission co-
efficient needs to be measured in order to experimentally
determine the width of the barrier and it is given by the
equation,

T (E) =

∣∣∣∣AIII

AI

∣∣∣∣2 . (2)

After determining the solutions to the Schrödinger
Equation and the subsequent coefficients, the transmis-
sion coefficient is given by,

T (E) = e−2ka, (3)

where

k =

√
2m

ℏ2
(V0 − E). (4)

In these equations, a is the width of the barrier and
m is the mass of the particle. Experimentally, however,
these equations are slightly altered due to an applied bias
to the circuit. The new form of the barrier is described
by Figure 2.
This new potential barrier design, however, can be ap-

proximated to a barrier of smaller height,
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FIG. 2: The figure shows the layout for the experimental setup,
but now with an applied bias to the circuit [1].

V = V0 − eγ
U

2
, (5)

where γ is a scaling factor of the value 0.3 for the de-
vices used in the experiment and U is the introduced
bias.

The final equation for the transmission coefficient for
the single barrier experiment and the one used in further
calculations is given by,

T (E) = e
−2a

√
2m
ℏ2 (V0−eγ U

2 −E)
, (6)

after substitutions are made for V and k, the value for
E is the energy of the electron, which is 0, when close
to the band bottom due to the cooling mechanism intro-
duced in the experiment.

B. Double Potential Barrier

The double potential step follows a very similar ap-
proach only now the setup is shown in the graph in Figure
3.

FIG. 3: The figure shows the layout for the experimental setup
consisting of the two materials of different potentials with the
barrier V0 = 200meV . The graph shows energy as a function of
position x, with a being the width of the potential barrier and b
being the width between the two barriers.

The double potential barrier also requires the solutions
to Equation 1, but in this case, will have 9 coefficients
to find solutions for. The transmission coefficient in this
case is given by

T (E) =
T 2
B

T 2
B + 2(1− cos(2kb))

, (7)

where

k =

√
2mE

ℏ2
. (8)

TB is the approximated transmission through each bar-
rier and E has resonances defined by the equation,

E =
γeU

2
=

ℏ2π2n2

2mb2
. (9)

The part of the equation, (γeU)/2, came from the same
reasoning seen in the single potential barrier where a bias
was applied and the new potential was estimated at a
fraction of the height of the bias. The width of the bar-
rier directly affects the location of resonances in the bias.
In the second part of the equation, the energy is repre-
sented by different states, n, where n = 1, 2, 3, ... and
b is the width between the two potential barriers. The
equation is similar to the bound states in an infinite po-
tential well, which the experimental setup resembles. In
between the two barriers, the particles will behave simi-
larly to the infinite potential system, by creating differ-
ent energy resonances. By connecting the two equations
through energy, the bias now redefines the ground state
and creates an exponential curve with resonances sprin-
kled throughout.

III. METHODS

This experiment used four different samples each with
a varied potential barrier setup. The device’s electrical
system used for this experiment is placed inside a con-
tainer filled with liquid nitrogen for the entirety of the
trial. This procedure increases the accuracy of obtaining
the necessary data since it typically heightens the likeli-
hood of tunneling occurrences. We proceeded with the
experiment by connecting the mechanism to a computer,
which enabled us to manage the input voltage, track the
output current, and visualize the data using simulation
software. The schematics of the mentioned system are
shown in Figure 4

FIG. 4: The figure shows a schematic diagram of the layout for
the experimental setup including the source unit, the sample in
liquid Nitrogen, and measurement devices to track the current
and voltage. [2]
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Starting at 0 volts, we gradually raised the voltage
while carefully tracking the behavior of the output cur-
rent. The voltage was incrementally raised up to 1 volt,
and the change in current for each sample was studied.
Throughout the experiment, four separate configurations
were running concurrently. That is, one single-barrier
circuit, two double-barrier circuits, and a fourth sample
which resulted in a statistical anomaly due to its techni-
cal defects. Each configuration was rotated between the
groups to take measurements. After each trial, the data
was saved as a .txt file and the numerical analysis was
conducted using Excel.

IV. RESULTS

A. Single Potential Barrier

FIG. 5: The figure above displays the results of undergoing the
procedure on the Broken Single Barrier Sample C. The y-axis is
the current value measures in Amperes and the x-axis is the
voltage value measured in Volts.

FIG. 6: The figure above displays the results of undergoing the
procedure on the Single Barrier Sample D. The y-axis is the
current value measures in Amperes and the x-axis is the voltage
value measured in Volts. The exponential equation of best fit is
also shown on the graph.

Only one of the single barrier samples provided ade-
quate data, with Sample C being broken and producing a
straight line where an exponential curve should be. The

exponential curve was utilized to find the value of the
barrier width a.

B. Double Potential Barrier

FIG. 7: The figure above displays the results of undergoing the
procedure on the Double Barrier Sample A. The y-axis is the
current value measures in Amperes and the x-axis is the voltage
value measured in Volts.

FIG. 8: The figure above displays the results of undergoing the
procedure on the Double Barrier Sample B. The y-axis is the
current value measures in Amperes and the x-axis is the voltage
value measured in Volts.

Both of the double barrier samples were in working
condition and provided adequate results, producing a
noticeable peak that allowed us to calculate the barrier
width value b for both samples.

V. ANALYSIS

A. Single Potential Barrier

In order to calculate the barrier width a, Equation 6
was utilized to demonstrate a relationship between the
current I and the voltage V. The transmission coeffi-
cient T (E) is given as proportional to the current I, so
T (E) ∝ I. This relationship allows for mathematical
analysis to be performed on Equation 6 to develop a lin-
ear relationship where the slope is proportional to the
width value a.
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Firstly, the two sides of relationship T (E) ∝ I have
the natural log applied to them to remove the e factor in
Equation 6, resulting in the equation

ln (I) = ln (A)− 2a

√
2m

ℏ2

√
(V0 − eγ

U

2
) , (10)

where A is a constant of proportionality that can be
ignored for the purposes of this analysis. This equation
then represents a linear dependency between ln (I) and
U where a is equal to the negative slope.
This dependency was then graphed using the data from

Sample D to provide a value for a found from the neg-
ative slope when graphing the relationship described in
Equation 10. The graph can be seen in Figure 9.

FIG. 9: The figure above displays the linear relationship as
described in Equation 10. The slope is equal to −a, where the
y-axis is equal to the left-hand side of the equation while the
x-axis is equal to the right-hand side, where the constant of
proportionality, A, is disregarded.

This process was only able to be done on Sample D
because Sample C was broken and did not provide results
worthy of analyzation.

B. Double Potential Barrier

In order to calculate the barrier width b for the dou-
ble barrier samples utilizing the voltage values Equation
9 is used. In order to utilize the equation however, the
first resonance is considered where n = 1, and the en-
ergy is then zeroed, resulting in the relationship shown
in Equation 9.

This process is similar to what is done in the single
barrier samples as seen in Equation 5. This relationship
is then applied to the peak values of the current in Figures
7 and 8. The voltage values utilized are 2.42 ∗ 10−1 V
and 5.55 ∗ 10−1 V respectively. These U values are then
applied to Equation 9 along with the values γ = 0.3,
n = 1, and m = 0.067me to calculate the values for b.

After undergoing the necessary calculations, the b
value for Sample A was found to be 12.4 nm while the
value for Sample B was found to be 8.21 nm.

VI. DISCUSSION

With regard to both experiments, the exponential I-
U curve depicted in Figure 6 conforms to the theoretical
prediction, while the corresponding curve in Figure 5, for
the broken sample, appears completely linear. Further-
more, Figure 7 and Figure 8 present a peak in the I-U
curve (the first resonance) that is also in agreement with
the theoretical prediction. We observe that the I-U curve
in Figure 9 is not entirely linear. Nonetheless, the curve
would approximately follow a linear trend for the studied
values and therefore conforms to the predicted behavior.
Considering the single-barrier setting, When the nega-

tive of the slope is used to calculate a, the value is found
to be 1.67∗10−8nm. This value is eight orders of magni-
tude off from the expected range of 10nm, so there must
be something wrong with the methods used for analysis
seeing that the data appears to be adequate.
Further considerations of theory and experiment would

remind us of the fact that in a double-barrier setting,
a theoretical infinite well is anticipated to have various
bound excited states, each of which would be observable
on an extended graph as successive resonance peaks. This
appears to be somewhat contrary to the case when ob-
servations are made in a practical setting, and the depth
of the potential well plays an essential role. Particularly
in the case of this experiment, the potential well is deep
enough for only one such bound state. If the electron’s
energy were at the level of the first excited state (That is,
n = 2), the potential would thus be higher than the first
potential barrier, preventing any tunneling occurrences.
Therefore, only one peak is observed when considering
the I-U graph.
As stated, the objective was to calculate the barrier

width value for each of the setups. By performing the
necessary measurements, we were able to determine that
the b value for Sample A was found to be 12.4 nm while
the value for Sample B was found to be 8.21 nm. The
results were in reasonable agreement with theoretical pre-
dictions, leading us to conclude that this experiment was
successfully conducted and the results were to our satis-
faction.
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